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A non-linear controllable dynamical system of general form, described by Lagrange’s equations, is 

considered. The generalized control forces are subject to geometrical constraints. It is required to construct 

feedback-implementable control forces that will steer the system in finite time from an arbitrary initial state 

to a given terminal state. The problem has an explicit solution under fairly general assumptions. The 

construction utilizes a decomposition of the system into several simpler subsystems, each with one degree of 

freedom. It is shown, in particular, that if the system is subject to control forces alone, it can be steered in 

finite time to any given state, however weak these forces. Upper bounds are obtained for the duration of the 

control process. 

1. STATEMENT OF THE PROBLEM 

CONSIDER a non-linear dynamical system described by Lagrange’s equations 

d dT c3T 
---.-~----~@i+Fi 
dt dqi %i 

(1.1) 

Throughout this paper the dot stands for differentiation with respect to time f, q = (ql , . . . , qn) is 
the vector of generalized coordinates, T is the kinetic energy of the system, Qj are uncontrollable 
generalized forces and Fi are controllable generalized forces. We shall assume that all relevant 
motions of system (1.1) take place in a domain D in n-space R”, so that q E D always. In particular, 
D may be all of R”. Throughout, the indices i, j, k take values 1,2, . . . , n. 

We will now state our initial assumptions concerning the kinetic energy 

of the system and the generalized forces. Here A(q) is a symmetric positive definite it x n matrix 
with elements ai; which are continuously differentiable functions of q for q E D. The summation 
in (1.2) and throughout what follows is performed over values of i, j ranging from 1 to IZ. It is 

assumed that for any q E D all the eigenvalues of A (q) lie in an interval [m, M], where M > m > 0. 
Thus, for any n-vector z 

m (z, z)G (A(q)z, 3)GM(z, z), O-Cm-=&V, VqHJ 

In addition, we will assume that 

(1.3) 

IaQij(q)/dq,lGC, YqED, C=const>O (1.4) 

and that the uncontrollable generalized forces Qi in (1.1) consist of three terms, each subject to 
different restrictions: 

tPrikl. Mat. Mekh. Vol. 56, No. 2, pp. 179-191, 1992. 

157 



158 F. L. CHERNOUS'KO 

Q,=Pi+RifSi (15) 

The forces P;(q, q’, t) are given functions of the generalized coordinates and time. 
The terms Ri(q, q’, t) in (1.5) represent dissipative forces. The exact form of Ri(q, q’, 1) may be 

unknown. Our only requirement is that these forces possess the property of dissipativeness, and that 
they be sufficiently small at low velocities. The former property means that the power of the 
dissipative forces is non-positive: 

for ail q E D, all q’ and all t>t -I n, where to is the starting time. The second property may be stated as 
follows: there exists a sufficiently small number of vo> 0 such that, if j qi’ / d v< v. for all i, then 

I&[ QGYv) (1.7) 

where R,“(v) are certain continuous monotone increasing functions defined over UE [0, ~a], such 
that RF(O) = 0. 

The terms Si(q, q’, t) in (1.5) represent uncertain external perturbations, the only restriction 
being that they be bounded 

]Sil <SC (1.8) 

for all qED, all q’ and t>to. Here S!‘> 0 are specified constants. 
Concerning the control forces Fi in (1.1) we wilt assume that they are large enough to balance the 

given external forces Pi, after that the control may be chosen in a certain domain..Thus, we assume 
that Fi can be written as 

F,=-l’,( Q, g’, O+G, (1.9) 

The vector G = (G, , . . . , G,) may be chosen from some set W, which will generally depend on q, 
q’ and t, i.e. 

GEW~~, p’, t)cR" (1.10) 

We will assume that for all q E D, all q’ and all tB to the set W contains a neighbourhood W(, of the 
origin. 

W(q, q’, 0xw0, o=vlr, (1.11) 

We will assume that W. is either a sphere of radius r>O 

W,=={G : jGl<r-) (1.12) 

or a rectangular parallelepiped, corresponding to independent constraints on G 

W,=(G :IG&G,“j (1.13) 

In the case of constraints (1.13) we define 

r=mini G,” (1.14) 

Substituting (1.5) and (1.9) into system (l.l), we get 

d ifW dT 
- y -- - = Rj + Sj Jr Gi 
dt iYqj @i 

(1.15) 

Suppose we are given initial conditions 

4 (toI =q”, a’(t”)=(q’)” (1.16) 

and terminal conditions corresponding to the state of rest 

q(t*)=q*, q’(t*)=O (1.17) 

where q”E D, q* E D, t, >t ,). The control problem may be formulated as follows. 
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Problem I. It is required to find a feedback-implementable control G(q, q’) that satisfies the 
condition 

GEW, (1.18) 

and steers system (1.15) from any initial state (1.16) to a given terminal state (1.17) in a finite (but 
not fixed) time. The set IV,, is given as (1.12) or (1.13) and in either case, by (1.14), contains the 
sphere 1 G ) d r. The kinetic energy of system (1.15) is defined by (1.2) and satisfies conditions (1.3) 
and (1.4), while the forces Ri and Si in (1.15) satisfy the constraints (1.6)-(1.8). 

Note that if the control G satisfies constraint (1. IS), it follows from (1.11) that it also satisfies the 
initial constraint (1.10). 

We will first construct a solution of Problem 1 on the assumption that system (1.15) involves no 
dissipative forces or perturbations, that is, R; = S, = 0. The general case will be considered later. 

2. CONTROL WHEN THERE ARE NO EXTERNAL FORCES 

If Ri = Si = 0, system (1.15) becomes 

d 4T iIT G. 
Tag,‘--= dq, ’ 

(2.1) 

We will let E >O be some given positive number and let Ri denote the set of all points of the 
2n-dimensional phase space (q, q’) at which q E D and 1 qi’ I> E for at least one i. Let flz denote the 
set of all points (q, q’) at which q E D and / qi’ / d E for all i. Thus, 

!?,.=((q, q’): q=D: “i, I(I,‘]‘E} 

(2.2) 
ii: -{i,q, ii’): q’D; y:‘, q*‘( gp) 

We will construct the control G(q, q’) separately for each of the domains 1Ri and QR2, and also 
specify the number E. By the theorem on the variation of kinetic energy, applied to system (2.1), we 
have 

(2.3) 

We will choose a control R in LR, so as to satisfy the constraints (1.18) and so that the derivative 
(2.3) is negative. To that end we define 

G=-rq.1 q'l-', G,=-G,” sign qi (2.4) 

for cases (1.12) and (1.13), respectively. Substituting (2.4) into (2.3), we obtain, respectively, 

dT/dt = -rlq’l, dT,‘dt = - Gi’ 1 Qi* I 

In view of the notation (1.14), we see that in both cases (l.;Z), (1.13), 

dT/dt=2T”*dT’“/dt6-rlq-l 

(2.5) 

(2.6) 

The upper bound (1.3) for the kinetic energy gives 

Iq’p(2T/M)‘!* (2.7) 

Substituting (2.7) into the right-hand side of inequality (2.6) and noting that T>O in RI [see 
(2.2)], we obtain 

dT’“/dt<-r(2M)-“2 (2.8) 

Integrating inequality (2.8), we have 
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T”~-T”“‘d--r(2M)-“‘(t-t,) (2.9 
where To is the kinetic energy at the starting time to. It follows from (2.9) that in a finite time the 
kinetic energy will become as small as desired. Consequently, at some time tl the system will reach 
the border between Ri and fln2. 

We shall need bounds for the time ti and generalized coordinates q( tI ). By (1.3) and (2.2)) if Ti is 
the kinetic energy at time ti , then 

T,z-m(q’; q’)/2>me”/2 (2.10) 

Inequalities (2.9) and (2.10) yield the required bound for ti : 

t,--te<T,, t,-(2M)“Jr-‘(T,“1-(m/2)“‘&] 

To estimate q(tl), we write the obvious inequalities 

~qi(t~)-qiO~~‘~~qi’~~~~ {]q’]dt 

We will use the following inequalities, which kllow from iy.3) and (2.9): 

Iq’I< (2T/m)‘!;< (2/m)“‘[T,‘“-r(21M)-‘“(t-to)] 

Substituting (2.13) into (2.12) and integrating, we obtain 

lil~(l’o-ql”l~~tt,-t(;), 

cp(T)=(2To/m)‘“z-r(lm)-‘“t’/2 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

A direct check will show that cp(r) is a strictly increasing function in the interval [0, ri], where ri is 
defined in (2.11). Since t, -to <rl [see (2.11)], it follows that ~(t, -&)~cp(ri), and therefore, using 
(2.11), we deduce from (2.14) that 

(2.15) 

Thus, at a time ti the system is on the boundary of fii and an2. We construct the control in flR2 so 
that the system, having once entered f12, will never leave it again but will reach the terminal state 
(1.17) in a finite time. 

We will write Lagrange’s equations (2.1) in expanded form, substituting T from (1.2): 

Here 

1 z U,,Clj” -i- c yi;kqj’qk’ - Gi (2.16) 

j j. k 

aai, 1 aa:, -_-- Ti;k = dqk 
2 @i 

where Yijk may be regarded as the components of n-vectors 

rjk= (Yljk, . . . 7 TnjA) 

We rewrite Eq. (2.16) in vector notation and solve it for q”. This gives 

q”=Ui-v 

where 

II _= A-‘G, I/ = -. c A-lrjkqj’qk 
i. k 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

It follows from condition (1.3) that the eigenvalues of the inverse A-’ lie in the interval [M-l, 
m-l]. Consequently, for any n-vector z,, 
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IAzldqz~, IA-‘zl~m-‘Iz~ (2.21) 

We subject the components Ui of the vector U to the constraints 

1 Vii < U”, U”=rM-‘n-” (2.22) 

The truth of these inequalities implies that of the inequality j Uj SG rM_‘, which, in turn, by (2.20), 
(2.21), implies /G/ = IAU]=SMI U/Gr. Consequently, G satisfies (1.18) whether IV0 is taken to be 
(1.12) or (1.13). Thus the constraint (2.22) implies the truth of condition (1.18). 

To estimate the vector V in (2.20), we use the second inequality of (2.21) 

(2.23) 

Inequalities (1.4) imply estimates for the quantities Yijk introduced in (2.17): lyijk 1 S3hC. Hence, 
using (2.18), we have 

We substitute these bounds for rjk, and also the inequalities 1 qi’ / <+-which are true in & by 
virtue of (2.2)-into (2.23). This gives j V~s~~hCa~“rn-~~*. Consequently, we have the following 
bounds for the components Vi of V 

/VilCVO, p=Jf*cns~-*ez (2.24) 

Equations (2.19) and the constraints (2.22) and (2.24) may be rewritten as 

qJ’=Ui+ 1’6, 1 l!Yil G U”, 1 Vi] Q V” (2.25) 

where U” and V” are as defined in (2.22) and (2.24). 
Assuming that 

p= V”/U”< i (2.26) 

we will construct a control Ui separately for each degree of freedom of system (2.25). 
To do this we will admit that Vi may be arbitrary functions satisfying the constraints (2.25). We 

will use the minimax (guaranteed) approach, which is characteristic of the theory of differential 
games [l]. 

Considering the ith equation of (2.25), we define 

gi-qi*f-x, qi*=xa=y, U('U, Vi=“U (2.27) 

and rewrite (2.25) and (2.26) as 

x’=y, y’=-u-t”u, ]u] <V, 1 u] qd.l’, O-=+~ 1 (2.28) 

At time cl, by assumption, the system is at the boundary of the domains 0, and &I2 [see (2.2)]. 
Taking (2.27) into account, we have the following initial conditions for system (2.28): 

X(t*)=X’=Qj(t.,)-qi*, y(t*)=Y*=gi’jt,)* l!/‘IGa (2.29) 

The terminal conditions (1.17) become 

s(t*)-0, y(t*) =o (2.30) 

To ensure that the system, having reached fiR2 at time tl , will not leave the domain again, we 
require that 

]!#)]fe, t==tt (2.31) 

Thus, we have the following decomposition of Problem 1 in Q *: instead of the problem for the 
initial system with 12 degrees of freedom, we obtain n analogous problems for systems with one 
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degree of freedom each. To solve Problem 1 in f22, therefore, we need only solve the following 
problem. 

Problem 2. Find a control u(x, y) for system (2.28) that satisfies the constraints (2.28) and (2.31) 
and will steer the system from the initial state (2.29) to a terminal state (2.30) in a finite time for any 

admissible v satisfying (2.28). 
Problem 2 will be solved by a certain modification of a method used to solve a simple differential 

game for system (2.28). The players in the game select controls u and v subject to constraints (2.28); 
controls u endeavour to decrease and controls v to increase the time r, at which the system reaches 
the origin [see (2.30)]. It is known (see [l]) that the optimal control u in this game is the same as the 

time-optimal control for the system 

x’=y, y’=(l-P)lL, ]u]<C’O (2.32) 

This system is derived from (2.28) by putting v = -pu, which corresponds to an optimal (worst for 
u) control for the second player, who selects v. The synthesis of a time-optimal control for system 

(2.32) with terminal condition (2.30) is determined by the relations 

where 

u(x, y)=U”sigu[g,(x)--y] if yf$sx) 
(2.33) 

u(x, y)=C”signx=-Vsign y if y=gJx) 

~,(x)=-[22°(i-p)~x[]‘I’signx (2.34) 

The switching curve y = +“(x) for the control (2.33) is the union of two branches of parabolas 
which are symmetrical about the origin. These branches are the optimal trajectories that reach the 
origin. 

Unlike this solution of problem (2.33), (2.34), our solution of Problem 2 must take the phase 

constraint (2.31) into consideration. During the construction, however, we can drop the optimality 
condition. 

Choose some number 6 E (0, E) and define a function +(x) by the equations 

(2.35) 

The number x* in (2.35) is determined from the condition that $(x) be a continuous function, i.e. 
$,(x*) = -6. By (2.34), we get 

x*=62[2uu( I-p)]‘-’ (2.36) 

The required solution u(x, y ) of Problem 2 may be written in the form (2.33), with &(x) replaced 
by 9(x) as defined in (2.35). We have 

u (x7 y) = 1 iJo sign [Q(x) - y], Y #S(x) 
U” sign x = - U” sign y, y = $ (5) 

(2.37) 

The switching curve y = $(x) for the control (2.37), (2.35) is symmetrical about the origin and is 
the union of two arcs of parabolas and two rays (the solid curve in Fig. 1). Since 6 < F, this curve lies 
within the strip jy 1 de and divides it into two symmetrical parts: the domain X+ where y < IJJ (x) and 
u = U”, and the domain X- where y > $(x), u = U” [see (2.37)]. 

We shall prove that the control (2.37), (2.35) solves Problem 2. 
The initial conditions (2.29) hold at time r, 
According to Eqs (2.28) and the control law (2.37), we have 

y’31iC(i-p), (5, y)=X”; y’<--li’“(l-p), (x, y)EX- (2.38) 

The width of the domains X+ , X- in they direction is at most E + 6 (see Fig. l), while the velocity 

of motion in that direction is finite and directed toward the switching curve [see (2.38)). 
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FIG. 1 

Consequently, the phase point will never leave the strip Iy ( =G F but after a finite time, at a certain 
time t2 2 tl , will be incident on the switching curve y = q(x). 

Suppose that at time t2 the phase point has hit the straight part y = *S of the switching curve 
y = G(x). After that the point will move along the straight part of the curve in a sliding regime. This 
follows from the fact that the phase velocities on both sides of this part of the curve are finite and 
directed toward the switching curve. The motion will take place along these parts of the curve at an 
appropriate constant velocity y = x0 = +S in the direction of decreasing 1x1. Consequently, in a 
finite time, at some time t3> t2, the phase point will reach one of the points (+x*, ?S) at the 
junction of the straight and curved parts of the switching curve. The curved (parabolic) parts are the 
phase trajectories of system (2.28) if u is selected in accordance with (2.37) and v = -pu. If vf -pu, 
the motion induced by control (2.37) will nevertheless take place along these parts of the parabolas, 
but in a sliding regime. In a finite time, therefore, at time t, , the phase will reach the origin. 

The thin curves in the figure represent some possible phase trajectories. The arrows indicate the 
direction of increasing time t. 

The entire motion, from time t, to time t,, falls into three stages: motion in the domain X+ or 
X-; motion along the straight lines y = +S and motion along the parabolas. Some of these stages 
may be missing. For example, at the initial time tl the phase point may either he on the switching 
curve or proceed directly from Xt or X- to the parabolic part of the curve. In all cases, however, 
the duration t, -t, of the motion is finite, 

To estimate this total time, let us assume that all three stages actually occur-this will lead us to 
an upper bound. The length rz - ti of the first stage (moiion in X’ or X-> is estimated by dividing 
the maximum width E + S of the domains along the y axis by the velocity y’ of minimum absolute 
value as in (2.38). This gives 

t,-1,~(E+S)[UO(i-p)]-’ (2.39) 

To estimate the coordinate x(&) we will use the constraint (2.31) and the initial condition (2.29): 
1 

f 5 Ox) - x1 I < f I Y i dt < p: (t, - &) ‘ 
t* 

Hence, using (2.39), we get 

IS(t)]~~5’1-tE(E+~)(~‘(1-P)]-’ (2.40) 

The length t3 - t;? of the second stage (motion along straight lines y = +S) is estimated by dividing 
the distance along the x axis by the velocity, which is S in absolute value 

t,-t,Q[it(t*)l-~*fS-t 

Substituting (2.36) and (2.40) into this inequality, we obtain 

tS--ta+Y’JVt-&(E+6) fu*(~-p)sJ-‘-s12~“(I-p) I-’ (2.41) 

The length t, - t3 of the third, last stage (parabolic motion) may be estimated by dividing the 
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velocity 6 of maximum absolute value at the beginning of the stage by the acceleration of minimum 
absolute value, defined by (2.38). This gives 

t*-t,afU”fl-p) I-’ (2.42) 

Adding {2.39), (2.41) and (2.42), we obtain an upper bound for the total duration of motion in 
Problem 2: 

t*--t,< ]z’[b-‘+ (2~‘+4~6+3K*)6-‘[2U’( l-p) I-’ 

The result may be summarized in the form of a theorem. 

(2.43) 

Theorem I. The control u (x, y) determined by Eqs (2.37) and (2.35), in which the function jt,, and 
number x” are defined by (2.34), (2.36) and S by any number in the interval (0, E), is a solution of 
Problem 2, i.e. it satisfies the constraints (2.28), (2.31) and steers system (2.28) from the initial state 
(2.29) to the terminal state (2.30) in a finite time t, -t, which is bounded as in (2.43). 

We now turn to the solution of the original Problem 1 in the case Ri = Sj = 0. The required 
control G(q, q’) in fit is defined by (2.4); the control in fi2 may be obtained from the solution 
u(x, y) of Problem 2. To that end it is sufficient to use the relations G = AU of (2.20) and the 
notation (2.27). The result is 

Gig, Q’)=A(q)U(q, Q’), Ui(qi, Ql)=U(!Ji-~~+, Qi') (2.44) 

We recall that the solution cc+, y ) of Problem 1 was obtained on the assumption that p< 1 [see 
(2.26)]; with the notation (2.22) and (2.24), this leads to the following restriction on E: 

e<e,=(2mr)“~(3MCn3)-” (2.45) 

To estimate the total duration f, -f, of the motion we must add the times of motion in the 
domains fi, and fi2. When evaluating t, - tl we take into consideration that 1~’ 1 in (2.43) should be 
replaced by the maximum (over i) difference / qi(r, ) - qi* 1 [see (2.29)], since the system will reach 
the terminal state when all coordinates take their terminal values. Using the estimate (2.15), we 
obtain 

This expression is substituted into (2.43), which we then add to inequality (2.11): 

&--to<6-’ maxi I qF-qi* I+ (2%) ‘%-r[ To*“-- (m/2) “‘Ef + 

+(M/m)‘far-‘&-‘(T,-me’/2f+ 

-I- (2~*+4~6+36~)6-‘~2U~(i-y)~ --( (2.44) 

The parameters U” and p are defined by (2.22), (2.24) and (2.26), with p> 1 by condition (2.45). 
The result may be stated as the following theorem. 

Theorem 2. Problem 1 for system (2.1), i.e. when Ri = Sj = 0, is always solvable. For any 
E E (0, Q), with E~) given by (2.45), the control G(q, q’) defined by (2.4) in Qi (for cases (1.12) and 
(1.13), respectively) and by (2.44) in a2 solves the problem, i.e. it steers system (2.1) from any 
initial state (1.16) to a given terminal state (1.17) in a finite time t, - to which satisfies inequality 
(2.46). Under these conditions the function U(X, y) in (2.44) is defined by (2.37), (2.35) and (2.34), 
in which the parameters U”, p and x* are given by formulas (2.22). (2.26), (2.24) and (2.36) and 6 is 
any number in the interval (0, F). 

We observe that, in order to reduce the duration of the motion, 6 should be chosen as close 
as possible to E. If 6 = E, however, one can no longer guarantee that the system, after reaching 
the boundary of fir and a,, will remain in fil. For that reason 6 should be chosen in the interval 
(0, E). Our solutions to Problems 1 and 2 are naturally not unique. In particular, there are other 
possible ways to synthesize controls in the one-dimensional system (2.28) obtained by the above 
decomposition. 
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3. CONTROL OF THE GENERAL CASE 

We now proceed to solve Problem 1 for system (1.15) in the general case. The approach is largely 
the same as in Sec. 2. 

Letting F>O be given, we again introduce the domains fi, and an2 defined by (2.2). By the 
dissipative property (1.6) of the forces Ri, the theorem on the variation of the kinetic energy of 
system (1.15) yields a relation similar to (2.3) 

dT,‘dt < 
c 

(Ci + Si) Qi’ (3.1) 

i 

The control G in ai will be chosen so as to minimize the scalar product (G, q’) subject to the 
constraint (1.18). Whether IV0 is defined by (1.12) or (1.13), we again obtain the appropriate 
expression of (2.4). We now substitute these expressions into inequality (3.1) and use the 
constraints (1.8), as well as the Cauchy inequality. If IV, is a sphere (1.12), we obtain 

where 

If W0 is a rectangular parallelepiped (1.13), w; obtain 

where 

dTJdt < - 
c 

(Gi” -- Si”) j qi’ I< - rg 1 qi’ 1 
1 

(3.3) 

(3.4) 

rs = 
E 

(GiO _ &o)Z] “’ (3.5) 
1 

and it is assumed that 
Gt>SF, i=l, . . . , n (3.6) 

Thus, if inequalities (3.3) hold for the sphere (1.12), or inequalities (3.6) for the parallelepiped 
(1.13), then inequalities (3.2) and (3.4) lead directly to inequality (2.6) with the constant r>O 
replaced by r, > 0. Here and below the indices (Y = 1, 2 correspond to cases (1.12) and (1.13)) 
respectively. Hence all the formulas of Sec. 2 relating to Sz, remain valid, with the above 
reservation. 

We will now consider &. We impose the condition 

8GVO (3.7) 

under which the estimates (1.7) will hold in the domain. Lagrange’s equations (1.15) may again be 
converted to the form (2.19), by solving for the derivatives 

q--u+ v* (3.8) 

with the same relation (2.20) holding for U as-before. The vector V, in (3.8) is given by 

v*=v+Jl-‘(R+S) (3.9) 

The vector V is defined by (2.20); R and S are the vectors with components Rj and Si, 
respectively. 

Using inequalities (2.21) for A-', (1.7) for Ri and (1.8) for Si, we obtain the estimate 

IA-‘(z?+S)I sm-‘[RO(e)+SO] (3.10) 

HO (e) L= {C [Rio(E)J2}“, So .z [C (Si”)2]’ 

i i 
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In accordance with the assumptions made in Sec. 1 about the functions R:’ [see (1.7)], R”(E) is a 
continuous monotone increasing function of E, with R”(0) = 0. 

Inequalities (2.24) and (3.10) imply the following bound for the vector V, in (3.9): 

~v*~~v*“=~‘“+m-‘[H”(&)+,~~]= 
=m-‘[ 3/2Cn”~a2+Ro (E) i-S”] 

We impose the following analogue of condition (2.26): 

(3.11) 

p*=v*“/lJOcl (3.12) 

The procedure for constructing the control in fiR2 and all the subsequent estimates in that domain 
remain the same as in Sec. 2. The only changes are to replace p by p* and r by ra in the estimates 
(2.46) for the time. In formula (2.22) for CIa the parameter r must be retained without change: here 
it is defined by (1.12) and (1.14) for cases (1.12) and (1.13), respectively. In addition, the 
restrictions on the choice of E are changed: instead of (2.45) we now have two conditions: (3.7) and 
(3.12). In developed form, using (2.22) and (3.11), we obtain 

E<Vo, =I& “$+R’(e) +S”<mM-‘m-“l (3.13) 

Thus, our procedure for control synthesis will produce a solution of Problem 1 provided the 
following conditions are satisfied: inequalities (3.3) or (3.6) in cases (Y = 1, 2, respectively, and both 
inequalities (3.13) for E. A number F satisfying (3.13) will always exist if there are no perturbations 
(S” = 0) or if the perturbations are sufficiently small (S”dmM-‘rn-L’2). This follows from the 
continuity of R”(E): R” -0 as E-+O. We note that in the case of dissipative forces proportional to 
the velocities the functions Ry in (1.7) and R” in (3.10) are linear in E. 

We summarize the results. 

Theorem 3. Let (Y be 1 or 2, depending on whether WC, is a sphere (1.12) or a parallelepiped (1.3)) 
respectively. Assume that conditions (3.3), (3.6) are satisfied for cx = 1, 2, respectively, and that 
there exists E > 0 satisfying both conditions (3.13). Then the control G (q, q’) defined by (2.4) in a, 
(for (Y = 1, 2, respectively) and by (2.44) in R2 solves Problem 1 for system (1.15), i.e. it steers the 
system from any initial state (1.16) to a given terminal state (1.17). Under these conditions the 
function u(x, y) in (2.44) is defined by (2.37), (2.35) and (2.34) in which the parameters U”, x* are 
given by (2.22) and (2.36). The parameter p in formulas (2.34) and (2.36) should be replaced by p* 
as in (3.12) and (3.11); under these conditions we have p* <l. The number 6 may be chosen 
anywhere in the interval (0, E). The duration t, -to of the motion is finite and satisfies inequality 
(2.46) with r replaced by ru [see (3.3), (3.5)] and p by p*. 

It should be pointed out that similarly formulated control problems have been considered in [2,3] 
with more stringent conditions on the magnitude of the control forces, Thus, if there are no external 
forces (Ri = Sj = 0), Sec. 2 of this paper yields a solution of the control problem for control forces as 
small as desired, whereas in [2, 31 we required that the control forces could take fairly large values. 
On the other hand, the duration of the control process as obtained in [2, 31 was generally smaller. 
As shown in [3], the results may be applied to control problems for manipulative robots. 
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